Geometric Complexity Theory V: On deciding nonvanishing of a generalized Littlewood-Richardson coefficient

نویسنده

  • Ketan D. Mulmuley Hariharan Narayanan
چکیده

In this note it is observed that nonvanishing of a generalized LittlewoodRichardson coefficient of any type can be decided in polynomial time assuming the conjecture in [2, 6] that the coefficients of the associated stretching quasi-polynomial are nonnegative.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric complexity theory III: on deciding nonvanishing of a Littlewood–Richardson coefficient

We point out that the positivity of a Littlewood–Richardson coefficient c γ α,β for sln can be decided in strongly polynomial time. This means that the number of arithmetic operations is polynomial in n and independent of the bit lengths of the specifications of the partitions α,β, and γ , and each operation involves numbers whose bitlength is polynomial in n and the bit lengths α,β, and γ . Se...

متن کامل

Geometric Complexity III: on deciding positivity of Littlewood-Richardson coefficients

We point out that the remarkable Knutson and Tao Saturation Theorem [9] and polynomial time algorithms for linear programming [14] have together an important, immediate consequence in geometric complexity theory [15, 16]: The problem of deciding positivity of Littlewood-Richardson coefficients belongs to P ; cf.[10]. Specifically, for GLn(C), positivity of a Littlewood-Richardson coefficient cα...

متن کامل

Geometric Complexity Theory, Tensor Rank, and Littlewood-Richardson Coefficients

We provide a thorough introduction to Geometric Complexity Theory, an approach towards computational complexity lower bounds via methods from algebraic geometry and representation theory. Then we focus on the relevant representation theoretic multiplicities, namely plethysm coefficients, Kronecker coefficients, and Littlewood-Richardson coefficients. These multiplicities can be described as dim...

متن کامل

A max-flow algorithm for positivity of Littlewood-Richardson coefficients

Littlewood-Richardson coefficients are the multiplicities in the tensor product decomposition of two irreducible representations of the general linear group GL(n,C). They have a wide variety of interpretations in combinatorics, representation theory and geometry. Mulmuley and Sohoni pointed out that it is possible to decide the positivity of Littlewood-Richardson coefficients in polynomial time...

متن کامل

Deciding Positivity of Littlewood-Richardson Coefficients

Starting with Knutson and Tao’s hive model [KT99], we characterize the Littlewood– Richardson coefficient c λ,μ of given partitions λ, μ, ν ∈ N as the number of capacity achieving hive flows on the honeycomb graph. Based on this, we design a polynomial time algorithm for deciding c λ,μ > 0. This algorithm is easy to state and takes O (

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/0704.0213  شماره 

صفحات  -

تاریخ انتشار 2007